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Abstract. The reactor network synthesis problem involves the simultaneous determination of the
structure and operating conditions of a reactor system to optimize a given performance measure.
This performance measure may be the yield of a given product, the selectivity between products,
or the overall profitability of the process. The problem is formulated as a nonlinear program (NLP)
using a superstructure based method in which plug flow reactors (PFRs) in the structure are modeled
using differential-algebraic equations (DAEs). This formulation exhibits multiple local minima. To
overcome this, a novel deterministic global optimization method tailored to the special structure and
characteristics of this problem will be presented. Examples of isothermal networks will be discussed
to show the nature of the local minima and illustrate various components of the proposed approach.
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1. Introduction

The reactor synthesis problem can be simply stated as: given a set of reactions and
feeds, what is the configuration and operational characteristics of a reactor system
which will optimize a given performance measure? This performance measure
can range from the yield of a product, to a complicated measure involving both
capital and operational economics. As a result of the influence the reactor section
has on the operation of a complete process, the determination of a true optimal
configuration is needed in order to maximize the overall profitability.

The solution of this problem has been approached in many different ways.
Early work was directed toward choosing the optimal mixing within a reactor
for a given reaction system (Dyson and Horn, 1967; Horn and Tsai, 1967). Other
work involved determining the optimal configuration for a given ‘type’ of reaction
scheme. Many examples of this appear in the book by Levenspiel (1993) and the
work of (Chitra and Govind, 1981, 1985). Other additional literature related to
these approaches is discussed in the references.

More recently, two different methods, the superstructure based and targeting
based, have emerged as the predominant approaches for the solution to this prob-
lem. Hildebrandt and Biegler (1995) provided an overview of these two methods,
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but focused on the targeting based approaches. In these approaches, the concepts
of reaction and mixing are used to generate a target, or the maximum achievable
performance. Using this information, a physical reactor network is then determined
to meet this measure. Horn (1964) presented a geometric based method for determ-
ining the ‘attainable region’ in concentration space of a given reaction scheme. The
works of Glasser et al. (1987), Hildebrandt et al. (1990), Hildebrandt and Glasser
(1990) and Feinberg and Hildebrandt (1997) discussed the mathematical properties
of the attainable region, and extended the work to include complicating parts, such
as temperature effects and reactor constraints. The recent works of Feinberg (1999,
2000a, b) have farther explored the properties of various reactor types which make
up the boundary of the attainable region. The geometrically based methods have
the drawback that extensions passed two or three dimensions are quite difficult.
In order to overcome this, optimization based methods as opposed to geometric
approaches have been used to determine the boundary of the attainable region.
Balakrishna and Biegler (1996) presented an overview of these optimization based
targeting methods. The works of Achenie and Biegler (1988) and Balakrishna
and Biegler (1992a, b) also provided examples of targeting approaches for both
isothermal and non-isothermal reaction systems.

The second class of approaches are the ‘superstructure based optimization’
methods. In these approaches, first a superstructure of possible reactor configur-
ations is postulated. The structure is then formulated into an optimization problem
and solved using various methods. Ong (1986) optimized a serial CSTR config-
uration using Dynamic Programming. Achenie and Biegler (1986, 1990) solved a
superstructure based on constant-dispersion reactors and recycle reactors respect-
ively, using a two-point boundary value formulation popular in the optimal control
literature. Kokossis and Floudas (1990, 1994a) postulated a novel superstructure
containing simple CSTRS and PFRs (which are approximated using a cascade
of CSTRs), and generated a mixed-integer nonlinear program (MINLP). This is
done for the cases of isothermal and non-isothermal reactors, respectively. The
work was extended to include reactor stability considerations (Kokossis and Flou-
das, 1994b), and reactor-separator-recycle systems (Kokossis and Floudas, 1991).
Schweiger and Floudas (1999) proposed a similar approach, but did not include
integer variables, nor any approximation of the PFRs in the system. This results in
an optimal control formulation which is solved using a sequential method. Cordero
et al. (1997) presented an approach using simulated annealing to solve an MINLP
formulation.

Some researchers have developed methods which are a combination of the tar-
geting and superstructure approaches. Lakshmanan and Biegler (1996) used the
basic concepts of the attainable-region to postulate a concise superstructure for a
given reaction scheme. The problem is then formulated as an mixed-integer optimal
control problem and solved by reducing it to an MINLP using orthogonal colloca-
tion to approximate the PFR dynamics. Marcoulaki and Kokossis (1999) presented
a similar type of approach without using an MINLP formulation. A simulated
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annealing method generates a reactor configuration using targeting ideas. Then
the configuration is evaluated using a simulation technique. The process is then
repeated until an ‘optimal’ configuration and operating conditions are determined.

A common limitation of all the optimization based approaches is the nature
of the resulting formulation. Due to the bilinearities which result from the mass
balances, and the arbitrary and often nonlinear kinetics, the formulations are non-
convex. In almost all cases this leads to the existence of multiple local minima.
Many of the authors in the previous references have made note of this (Achenie and
Biegler, 1986; Kokossis and Floudas, 1990; Hildebrandt and Biegler, 1995; Sch-
weiger and Floudas, 1999). In fact, some published solutions have later been shown
to be local in nature (Schweiger and Floudas, 1999). The application of simulated
annealing can only increase the chance of determining a global solution, but a local
minimum is typically obtained. A method which can guarantee the determination
of a global solution does not currently exist.

In this paper, a novel deterministic global optimization method will be presented
to solve the isothermal reactor network synthesis problem. The synthesis prob-
lem will be framed using a superstructure based approach, with the resulting op-
timal control formulation solved locally using standard NLP techniques (similar to
the approach presented by (Schweiger and Floudas, 1999)). The global optimiza-
tion method is based on the αBB (Adjiman et al. 1998a, b), a branch-and-bound
approach originally developed for twice continuously differentiable NLPs. The
approach was extended to handle optimal control formulations by Esposito and
Floudas (2000a). Section 2 will present the basic formulation of the problem, with
various simplifications and reformulations which make the application of a global
optimization method easier. Section 3 will discuss the basic concepts of the αBB
and the various customizations for the unique nature of this formulation. Finally,
in Section 4 examples of isothermal networks will be presented to illustrate the
various aspects of the approach.

2. Problem Formulation

The reactor network synthesis problem will be formulated using a superstructure
based framework. Only isothermal operation under the assumption of constant
density will be considered. The following information is assumed to be known:
(1) the composition of the inlet stream, (2) the reaction mechanism and rate con-
stants, and (3) the performance index to be optimize. The following information
will be obtained from the optimization procedure: (1) the overall structure of the
reactor network, (2) the relative flowrates and concentrations of each stream in the
network, and (3) the residence time of all reactors in the system.



62 W.R. ESPOSITO AND C.A. FLOUDAS

Figure 1. Reactor network superstructure.

2.1. REACTOR SUPERSTRUCTURE

The key points in the development of a reactor superstructure are provided by
Schweiger and Floudas (1999). For this study, a superstructure containing one PFR
with recycle, one CSTR, and a system bypass will be considered. Within the super-
structure, flow splitters are located at the inlet to the network and the outlet of each
of the reactors. Flow mixers are located at the inlet to each of the reactors, and at the
outlet of the network. This superstructure is illustrated in Figure 1. The definition
of the variables within this superstructure are given in Table 1. It should be noted
that the constant density approximation is directly included in the superstructure,
for instance, the volumetric flow into and out of a reactor is treated as the same
variable. All flowrates, F , are measured in l/time, and the concentrations, c, in
mol/l.

2.2. MATHEMATICAL FORMULATION

Using the superstructure depicted in Figure 1, its mathematical formulation is
detailed in the following sections.

2.2.1. Given Quantities

The following quantities are given in the definition of the problem: (1) ca, the inlet
concentration of all components, (2) k, the set of reaction rate constants for the
given kinetic model, (3) ν, the matrix of stoichiometric coefficients which describes
the given kinetic model, and (4) reasonable bounds on the size of the reactors. The
inlet flowrate, Fa, is set equal to 1 L/time (time units are not important). This sets
all the flowrates in the system to be relative to the flowrate of the inlet stream.
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Table 1. Definitions of variables within the superstructure.

Fa Network feed and product flowrate

Fac Flowrate from the feed splitter to the PFR mixer

Fad Flowrate from the feed splitter to the CSTR mixer

Fah System bypass flowrate

Fc Flowrate through the PFR.

Fch Flowrate from the PFR splitter to the product mixer.

Fcd Flowrate from the PFR splitter to the CSTR mixer.

Fec PFR recycle flowrate.

Fd Flowrate through the CSTR.

Fdc Flowrate from the CSTR splitter to the PFR mixer

Fdh Flowrate from the CSTR splitter to the product mixer

ca Network feed concentrations

cc PFR inlet concentrations

ce PFR outlet concentrations

cd CSTR inlet concentrations

cg CSTR outlet concentrations

ch Network product concentrations

τm Residence time of the CSTR

τ t Residence time of the PFR

2.2.2. Performance Measure

The objective of the problem is to optimize some performance measure based on
the reactor network. The objective function will be written as a minimization for
the sake of generality:

min
x

g(x) (1)

where x is the full set of algebraic variables, including sizes of various reactors,
flowrates within the network, and concentrations of various components within
those streams. The performance measure g(x) is a twice continuously differenti-
able function. In many cases, this measure is only a function of the component
concentrations at the exit of the reactor network, ch.

2.2.3. Splitters

Splitters are located at the network feed, and the outlets of each of the reactors.
These constraints represent the overall mass balances around each unit. Due to the
constant density assumptions, these balances can be written in terms of volumetric
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flowrates.

Fac + Fad + Fah − Fa = 0 (2)

Fch + Fec + Fcd − Fc = 0 (3)

Fdh + Fdc − Fd = 0 (4)

2.2.4. Mixers

Mixers are located at the entrance to each of the reactors and at the outlet of the net-
work. These constraints represent both the overall and component mass balances
around each unit. Due to the constant density assumption, the overall balances can
be written in terms of volumetric flowrates. The component balances are written in
terms of moles.

Fc − Fec − Fdc − Fac = 0 (5)

cci F
c − cei F

ec − c
g

i F
dc − cai F

ac = 0 ∀ i ∈ I (6)

Fd − Fcd − Fad = 0 (7)

cdi F
d − cei F

cd − cai F
ad = 0 ∀ i ∈ I (8)

Fa − Fch − Fdh − Fah = 0 (9)

chi F
a − cei F

ch − c
g

i F
dh − cai F

ah = 0 ∀ i ∈ I (10)

where I is the set of all components.

2.2.5. CSTR

The reaction rates, rj , are known and are functions of the molar concentrations
within the reactor:

rmj − fj (c
g) = 0 ∀ j ∈ J (11)

where J is the set of all reactions, and the function fj (c
g) is twice continuously

differentiable with respect to cg. The component balance, in terms of moles, around
the reactor can be written as:

c
g

i − cdi − τm
∑
j∈J

νij r
m
j = 0 ∀ i ∈ I (12)

where τm is the residence time of the reactor, and νij is the stoichiometric coeffi-
cient of component i in reaction j .
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2.2.6. PFR

The PFR is modeled under the assumption of perfectly plug flow. The reaction
rates, rtj (v̄), are functions of the molar concentration in the reactor, ct (v̄).

rtj (v̄) = fj
(
ct (v̄)

) ∀ j ∈ J. (13)

Both the concentration, and reaction rates are functions of v̄, the scaled position
along the length of the reactor. The component balance along the reactor, in terms
of moles, is written in dynamic form:

dcti
dv̄

= τ t
∑
j∈J

νij r
t
j (v̄) ∀ i ∈ I ∀ v̄ ∈ [0, 1] (14)

where τ t is the residence time of the reactor. The initial conditions on the dynamic
system are set by the inlet concentrations to the PFR:

cti |v̄=0 = cci ∀ i ∈ I. (15)

In order to link the reactor back to the rest of the network, the following point
constraints are imposed at the end of the PFR:

cti |v̄=1 = cei ∀ i ∈ I (16)

2.2.7. Formulation Notes

There are some interesting properties of this formulation:

• Due to the dynamic modeling of the PFR, the formulation is truly a variable
end time optimal control problem (OCP) with variable initial conditions. The
OCP has been reformulated into a fixed end time problem by setting the
independent variable in the integration (v̄) to be 0 to 1 and scaling the dy-
namic equations by the residence time of the reactor τ t . Equation (14) already
reflects this reformulation.

• The formulation is highly nonconvex in nature. This is due to the bilinear
nature in the mass balances around the mixers and the CSTR, the unknown
nature of the expressions for the reaction rates in the CSTR (Equation 11),
and the dynamic nature of the PFR. Therefore, this formulation may contain
multiple local minima.

2.3. ADDITIONAL FORMULATION ELEMENTS

The formulation developed in Section 2.2 is sufficient to solve the network from
a local point of view. To address the global optimization issue various additional
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constraints and reformulations are introduced. Many of the additional constraints
are redundant in nature, and were shown to be advantageous for the global solution
based on the work of Quesada and Grossmann (1995) for mass networks. The ad-
vantages of these constraints in the reactor network formulation will be illustrated
in Section 4.

2.3.1. Splitter Component Balances

It is possible to write balances around each of the splitters on a component basis.
These constraints are satisfied by the overall mass balance around each splitter.

cei F
ch + cei F

ec + cei F
cd − cei F

c = 0 ∀ i ∈ I (17)

c
g

i F
dh + c

g

i F
dc − c

g

i F
d = 0 ∀ i ∈ I (18)

2.3.2. Reactor Material Balances

Material balances can be written around each of the reactors based on the stoi-
chiometry of the given reaction mechanism. The material balances are satisfied by
the reactor component balances. In general, the material balances take the form,

∑
i∈I

γi
(
c
g

i − cdi
) = 0 (19)

∑
i∈I

γi
(
cei − cci

) = 0 (20)

∑
i∈I

γi
(
Fd c

g

i − Fd cdi
) = 0 (21)

∑
i∈I

γi
(
Fc cei − Fc cci

) = 0 (22)

where γi are constants derived from the reaction stoichiometry. Notice that the first
two of these constraints are linear in nature.

2.3.3. Recycle Plug Flow Reactor

In the superstructure given in Figure 1, the recycle around the PFR is explicitly
included as a separate stream. As an alternative to that formulation, the PFR is
replaced with the recycle reactor shown in Figure 2 and the stream Fec is removed.

In the figure, R is the recycle ratio, defined as Fec/F c in the original super-
structure. The following relationship for cii , the inlet concentration to the plug flow
section of the reactor, holds:

cii = cci + R cei

R + 1
∀ i ∈ I (23)
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Figure 2. Recycle reactor.

Figure 3. Sub-network structure.

Equation (23) is rewritten and included as a constraint in the formulation.

cii + R cii − cci − R cei = 0 ∀ i ∈ I (24)

Due to the removal of the stream Fec some constraints will need to be rewritten.
The mass balances for the splitter after the recycle reactor become:

Fch + +Fcd − Fc = 0 (25)

cei F
ch + cei F

cd − cei F
c = 0 ∀ i ∈ I (26)

The mass balances for the mixer before the recycle reactor become:

Fc − Fdc − Fac = 0 (27)

cci F
c − cdi F

dc − cai F
ac = 0 ∀ i ∈ I (28)

The initial conditions for the dynamic system for the plug flow section of the
reactor are now written as:

cti |v̄=0 = cii ∀ i ∈ I (29)

2.3.4. Subnetwork Formulation

In reality, at most one of crossing streams (Fcd and Fdc) would exist. Therefore, the
network can be split into two different sub-networks. In each sub-network, only one
of the crossing streams is included. The solution of these two smaller and simpler
formulations takes much less time than the solution of the full superstructure. The
two subnetworks are illustrated in Figure 3. Notice that by splitting the network,
one splitter and one mixer are removed from each problem.
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For each of the subnetworks, the formulation is changed significantly. Below
is a concise set of the constraints for each of the two subnetworks. They include
the additional formulation elements provided above (the redundant constraints, and
recycle reactor reformulation).

subnetwork 1

Mixers

Fc − Fdc − Fac = 0 (30)

cci F
c − c

g

i F
dc − cai F

ac = 0 ∀ i ∈ I (31)

Fa − Fc − Fdh − Fah = 0 (32)

chi F
a − cei F

c − c
g

i F
dh − cai F

ah = 0 ∀ i ∈ I (33)

Splitters

Fac + Fd + Fah − Fa = 0 (34)

Fdh + Fdc − Fd = 0 (35)

c
g

i F
dh + c

g

i F
dc − c

g

i F
d = 0 ∀ i ∈ I (36)

CSTR

rmj − f (cg) = 0 ∀ j ∈ J (37)

c
g

i − cai − τm
∑
j∈J

νij r
m
j = 0 ∀ i ∈ I (38)

∑
i∈I

γi
(
c
g

i − cai
) = 0 (39)

Recycle PFR

rtj (v̄)− f
(
ct (v̄)

) = 0 ∀ j ∈ J (40)

dcti
dv̄

− τ t
∑
j∈J

νij r
t
j (v̄) = 0 ∀ i ∈ I ∀ v̄ ∈ [0, 1] (41)

cti |v̄=0 − cii = 0 ∀ i ∈ I (42)

cti |v̄=1 − cei = 0 ∀ i ∈ I (43)

cii + R cii − cci − R cei = 0 ∀ i ∈ I (44)∑
i∈I

γi
(
cei − cci

) = 0 (45)
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subnetwork 2

Mixers

Fd − Fcd − Fad = 0 (46)

cdi F
d − cei F

cd − cai F
ad = 0 ∀ i ∈ I (47)

Fa − Fd − Fch − Fah = 0 (48)

chi F
a − cei F

ch − c
g

i F
d − cai F

ah = 0 ∀ i ∈ I (49)

Splitters

Fad + Fc + Fah − Fa = 0 (50)

Fch + Fcd − Fc = 0 (51)

cei F
ch + cei F

cd − cei F
c = 0 ∀ i ∈ I (52)

CSTR

rmj − f (cg) = 0 ∀ j ∈ J (53)

c
g

i − cdi − τm
∑
j∈J

νij r
m
j = 0 ∀ i ∈ I (54)

∑
i∈I

γi
(
c
g

i − cdi
) = 0 (55)

Recycle PFR

rtj (v̄)− f
(
ct (v̄)

) = 0 ∀ j ∈ J (56)

dcti

dv̄
− τ t

∑
j∈J

νij r
t
j (v̄) = 0 ∀ i ∈ I ∀ v̄ ∈ [0, 1] (57)

cti |v̄=0 − cii = 0 ∀ i ∈ I (58)

cti |v̄=1 − cei = 0 ∀ i ∈ I (59)

cii + R cii − cai − R cei = 0 ∀ i ∈ I (60)∑
i∈I

γi
(
cei − cai

) = 0 (61)

By splitting the superstructure into these two subnetworks, the resulting formu-
lations are simplified by more than just the reduction in the numbers of mixers
and splitters. In each of the subnetwork formulations, one of the reactors is also
simplified.

• In Subnetwork 1, the inlet of the CSTR is now a constant composition, ca ,
which is the feed composition to the network.
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• In Subnetwork 2, the inlet of the Recycle PFR is a constant composition,
ca. Therefore the initial conditions on the dynamic system, cii , are now only
functions of the recycle ratio, R. As will be shown in the next section, this
simplification makes the global solution of the problem much easier.

2.3.5. Reduced Component Formulation

Only a subset of the components needs to be accounted for. A subset of compon-
ents, I ′, is defined to contain those components meeting the following conditions:
1. Appearing in the performance measure, g(x)
2. Appearing in the reaction rate expressions, fj (c) in equations (11) and (13).
3. Reactants which do not appear in the rate expressions.

All the other component concentrations are not necessary for the solution of the op-
timization problem. If their concentrations are needed, they can be determined by
a simple set of function evaluations using the solution to the optimization problem.
The formulation is changed by rewriting all the constraints defined over the set I ,
over the set I ′. By reducing the number of components used in the formulation, the
number of constraints is reduced by half in some cases. This will reduce the time
it takes to determine a local solution to the formulation.

There is one other result of this reformulation. Since all of the components
are no longer included, the reactor material balance Eqs. (19) – (22) need to be
rewritten. All of the reactants are included, but not all the products. Therefore, the
total amount of reactants consumed is known, which must be greater than or equal
to the amount of products included in I ′ produced. The balances are rewritten as
inequality constraints:

∑
i∈I ′

γi
(
c
g

i − cdi
)

� 0 (62)

∑
i∈I ′

γi
(
cei − cci

)
� 0 (63)

∑
i∈I ′

γi
(
Fd c

g

i − Fd cdi
)

� 0 (64)

∑
i∈I ′

γi
(
Fc cei − Fc cci

)
� 0 (65)

2.4. FORMULATION CLASSES

In the solution of the example problems, four different classes of formulations
were investigated. For clarity, the elements used in each of these formulations are
described below:
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1. Standard. This is the standard formulation containing the constraints defined
in Section 2.2 only. As previously mentioned, this formulation did not perform
well in the global optimization approach.

2. Standard w/ additional constraints. This formulation includes all the ele-
ments of the standard formulation, plus the constraints defined in Sections 2.3.1
and 2.3.2.

3. Recycle PFR. This formulation includes the standard w/ additional constraints
formulation, plus the recycle PFR reformulation defined in Section 2.3.3. This
formulation is solved as a full network or using the sub-network structure
defined in Section 2.3.4.

4. Reduced component. This formulation includes all the elements of the recycle
PFR formulation, but reduces the number of components used as described in
Section 2.3.5. This formulation is solved as a full network or using the sub-
network structure defined in Section 2.3.4.

3. Global Optimization Approach

Within this section, a novel global optimization approach for the solution of the
reactor network synthesis problem will be presented. The approach is based on the
αBB method presented by Adjiman et al. (1998a, b), with extensions for optimal
control formulations given by Esposito and Floudas (2000a). First, the basic con-
cepts of the αBB will be given, then various extensions to tailor the approach to
this particular problem will be discussed.

3.1. BASIC CONCEPTS OF THE αBB

The αBB global optimization method (Androulakis et al. 1995; Adjiman and Flou-
das, 1996; Adjiman et al. 1996, 1998a, b) guarantees convergence to an ε-global
minimum for general twice continuously differentiable constrained and uncon-
strained NLPs. The applicability of the technique to differential-algebraic systems
has recently been shown by Esposito and Floudas (2000a, b). The approach gen-
erates a non-decreasing sequence of lower bounds and a non-increasing sequence
of updated upper bounds on the global solution. Finite ε-convergence to the global
minimum is achieved through the successive subdivision of the region at each level
in the branch-and-bound tree. The sequence of upper bounds on the global solution
is obtained by solving, to local optimality, the full nonconvex problem from dif-
ferent starting points. Lower bounds are generated by solving a convex relaxation
which underestimates the original problem. The overall steps in the approach are
outlined below.
1. Parse the problem, generating necessary information such as analytical first

and second order derivatives.
2. Generate a valid convex relaxation which underestimates the original formula-

tion.
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3. Update the bounds on some or all of the algebraic variables by solving a
sequence of feasibility problems.

4. Solve the relaxed problem to local optimality to generate an initial lower bound
on the global solution. Save this solution and variable bounds to be explored
later.

5. Solve the original nonconvex problem to local optimality to generate an upper
bound on the global solution.

6. Select the next saved region to be explored as the one with the lowest lower
bound.

7. Check for global convergence. If the lower bound and upper bound are within
a specified tolerance, stop and declare the upper bounding solution the global
solution to the problem. Otherwise, continue.

8. Update the bounds on some or all of the algebraic variables by solving a
sequence of feasibility problems.

9. Branch the region into two by bisecting on a selected variable.

10. In each new region, solve the relaxed problem to local optimality. If the solu-
tion is greater than the current upper bound, or no feasible solution is found,
then reject the region since it cannot contain the global solution. If the solution
is less than the current upper bound, save the region for later exploration.

11. In each new region, solve the original nonconvex problem to local optimality
using the solution of the relaxed problem as a starting point. If the solution is
less than the current upper bound, update the upper bound.

12. Go to step 6

This framework makes up the generic αBB approach. There are many parts which
allow for the customization of the method to a given class of problems. These
include: (1) the formulation of the problem, (2) the generation of the convex relax-
ation, (3) the selection of the branching variable, and (4) the method used to update
the variable bounds. The problem formulation was previously discussed in Section
2. The last three elements will be discussed in the following sections.

3.2. CONVEX RELAXATION

A key aspect of this branch-and-bound approach is the ability to generate a valid
convex relaxation which underestimates the original formulation. This is accom-
plished by replacing each of the nonconvex terms in the algebraic constraints and
the objective function by a convex underestimator. Looking at the formulation of
the problem, most of the nonconvexities take the form of bilinearities. They are
underestimated by a method given by Al-Khayyal and Falk (1983), Al-Khayyal
(1990), and McCormick (1976). Each bilinear term, xy, is replaced by an auxiliary
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variable, w, and the following four linear inequalities are added.

xly + ylx − xlyl − w � 0
xuy + yux − xuyu − w � 0
−xuy − ylx + xuyl + w � 0
−xly − yux + xlyu + w � 0

(66)

It should be noted that any constraint that contains only linear and bilinear terms
will become linear in the relaxed formulation. Additional nonconvexities can occur
within the rate expressions for the reaction mechanism, f(cg) given in (11). The
types of terms which occur in this expression are not known. For a univariate
concave term u(x), for example −x2, the tightest possible underestimator, L(x), is
a linearization from xL to xU .

L(x) = u(xL)+ u(xU ) − u(xL)

xU − xL
(x − xL) (67)

Terms which do not fall under one of the two types presented above, are re-
laxed using an α underestimator developed by Maranas and Floudas (1994). For a
nonconvex term in several variables, NC(x), the underestimator, L(x), would be

L(x) = NC(x)+ α
∑
i ∈ X

(xUi − xi) (x
L
i − xi) (68)

where X is the set of x variables participating in the term NC(x). The value of
α needs to be large enough to generate a convex function, but not too large as to
overly underestimate the function. It is shown that,

α � max

{
0, − 1

2
min
k

λk(x)

}
(69)

s.t. xL � x � xU

where λk(x) are the eigenvalues of the Hessian matrix of NC(x). It is preferable to
derive an analytical expression for the value of α using (69) as an equality. This will
provide the tightest possible convex underestimation of NC(x). When this is not
possible, interval mathematical methods are available for the generation of valid α

values as shown by Adjiman and Floudas (1996) and Adjiman et al. (1998b).
The dynamic part of the formulation (the constraints which describe the PFR or

recycle PFR), is underestimated using a method presented by Esposito and Floudas
(2000a). The dynamic system is considered as a simple input/output map:

ci

τ t
−→ DAEsystem

Eqs. (13) – (16)
−→ ce (70)

The input to this map is the initial conditions on the dynamics (the inlet concentra-
tion to the PFR) and the residence time of the reactor. The output of the map is the
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outlet concentrations of the various components. This map can be also written as a
set of functions,

cei = Fi(c
i , τ t ) ∀ i ∈ I. (71)

Given the conditions placed on the function f (c) used to describe the kinetics
of the reaction mechanism, the function defined by (71) is twice continuously
differentiable with respect to ci and τ t . The continuity and differentiability with
respect to the parameter, τ t , has been illustrated by Esposito and Floudas (2000a).
The continuity and differentiability with respect to the initial conditions, ci , is
illustrated below.

Pontryagin (1962) provides a series of theorems concerning the continuity and
differentiability of the solutions of the following type of system:

ż = g(z, v, t), (72)

The system of DAEs given for the PFR in Section 2.2.6 can be converted into the
form given in (72) by substituting the reaction rates, rtj (v̄), into the dynamic equa-
tions given by (14). It is also assumed that the right hand side of (72), g(z, v, t),
and the partial derivatives,

∂

∂z
g(z, v, t) (73)

are defined and are continuous in some domain 	 of the space of variables t , z, and
v. These conditions will hold because of the nature of the PFR equations and the
twice continuous differentiability condition placed on the reaction rate expressions
given in (13). This leads to the following:

THEOREM 1 (Pontryagin, 1962, p. 179). If (t0, z0) is an arbitrary point of the
domain 	, there exist positive numbers r ′ and σ ′ such that the solution

z = ψ(t; v, η)
of (72) which satisfies the initial condition:

ψ(t0; v, η) = η

is defined and continuous in the variables, t and η for

|t − t0| � r ′|η − z0| � σ ′

and has continuous partial derivatives with respect to η.

COROLLARY 1 (Pontryagin, 1962, p. 179). If all the partial derivatives of g(z, v, t)
with respect to the variables z and v up to the mth order inclusive exist and are
continuous, then the functions ψ(t, v, η) also have continuous partial derivatives
with respect to η, up to the mth order inclusive.
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Therefore, the function F (ci , τ t ) is also twice continuously differentiable with
respect to the initial conditions, ci

F (ci , τ t ), as well as it’s first and second order derivatives, are able to be eval-
uated using an integration routine. These functions are underestimated using a
similar approach to the α method shown in (68).

Li(c
i , τ t ) =Fi(c

i , τ t )+
∑
j ∈ I

βc
i,j (c

i,U
j − cij ) (c

i,L
j − cij )

+ βτ
i (τ

t,U
i − τ t ) (τ t,L − τ t ) (74)

A simplification of this form involves the use of a single β parameter for all the
variables involved in the expression:

Li(c
i , τ t ) =Fi(c

i , τ t )+ βi




∑
j ∈ I

(c
i,U
j − cij ) (c

i,L
j − cij )

+ (τ
t,U
i − τ t ) (τ t,L − τ t )

}
(75)

Esposito and Floudas (2000a, b) detailed methods of determining valid values for
the β parameters in (74) and (75). These methods are summarized here. First, the
Hessian matrix, Hi , of the function Fi(c

i , τ t ), is defined as:

Hi ≡ ∂2Fi

∂v2
(76)

where v is the vector [ci , τ t ]. The elements of this matrix are not analytical func-
tions of the variables. Instead, the matrix elements are determined at a given value
of [ci , τ t ] through the integration of an augmented dynamic system. As a result of
the implicit nature of the Hessian matrices, three different methods for determining
β values have been developed:
1. Constant. Constant values are preselected for each of the β parameters. Either

one β parameter for each term (Eq. (75)), or one β parameter for each variable
in each term (Eq. (74)) can be used.

2. Sampling. For this approach, only one β per term can be used. Before the first
iteration, a given number of points, pinit, in the variable space are selected and
the Hessian matrices, Hp,i are evaluated. The minimum eigenvalue of each
matrix, λmin

p,i , is determined and the β parameters are calculated by:

βi = −1

2
min
p

λmin
p,i

βi � 0
(77)

These β parameters are updated each time the bounds on any of the variables
ci or τ t change. At least a given number of points, pevery, is used in each
calculation.
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3. Sampling/Interval Analysis. In this method, once again the Hessian matrices,
Hp,i are evaluated at a given number of points. This time though, an interval
Hessian matrix, [H ]i , is created from the minimum and maximum of each
element over the set of sampled points. Interval methods proposed by Adjiman
and Floudas (1996) and Adjiman et al. (1998b) are then used to generate β

values. Either a single β per term or a β per variable per term can be calculated.

3.3. SELECTION OF A BRANCHING VARIABLE

At each level in the tree, it is necessary to select a variable to branch the current
region on. In a standard method, this is accomplished by selecting a variable based
on its overall contribution to the quality of the convex relaxation.

j ∗ = arg max
j∈J

δj (78)

where j ∗ is the index of the branching variable, and δj is the overall contribution
calculated for a given variable j . The set J represents the list of variables which
are considered for branching. This set may contain any number of variables in the
problem. The overall contribution is made up of two components,

δj = δdj + δaj (79)

where δdj is the measure calculated from the dynamic part of the formulation,
and δaj is from the algebraic part. These measures are determined by calculating
a variable’s contribution to the separation between each nonconvex term and it’s
underestimator at the solution to the relaxed problem in the current region. For the
dynamic part of the formulation, the measure is calculated by

δdj =
∑
i∈I

βi,j
(
vUj − vsol

j

) (
vLj − vsol

j

)
(80)

where v again represents the vector [ci , τ t ], and vsol is its value at the solution to
the relaxed problem. For the algebraic part, this measure is calculated as:

δaj =
∑
k∈Kj

fk(x
sol) − Lfk(x

sol) (81)

where Kj is the set of algebraic functions, fk(x), in which the given variable j

participates and Lfk (x) represents the underestimator of the function.
As an extension to this method, consider a case in which each of the variables

in the branching set can be given a weight, Wj , which represents its importance in
the problem formulation. Equation (78) is then rewritten as,

j ∗ = arg max
j∈J

δj Wj . (82)
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These weights could simply be set at the beginning of the algorithm. This would
require a substantial amount of prior knowledge of how the algorithm is effected
by branching on a certain variable. In order to overcome this difficulty, an adaptive
method, which calculates the variable weights depending on how the algorithm is
performing, was developed.

At each iteration of the global optimization approach two child regions are gen-
erated from a given parent by branching on a selected variable. The true objective
in selecting a branching variable is to choose the variable which will result in the
greatest increase in the lower bound in each of the child regions. The selection
method shown above, attempts to do this, but does not always select the best
variable. In this adaptive approach, the weights on the variables will be changed
depending on their branching performance, i.e., the increase in the lower bound
they generate. The approach calculates the relative change in the lower bound from
the parent to each child. If the change is greater than a nominal value, the weighting
is increased, and if it is less, the weighting is decreased. Also, some minimum and
maximum weighting must be enforced. The approach, as implemented, is detailed
below:
1. Set all Wi equal to 1 initially, chose an adaption parameter, A. This parameter

should be between 0 and 1. It determines the nominal increase in the lower
bound required, and the size of the weighting change on a given variable.

2. At each iteration, and for each region, calculate the relative change, Clb, in
the lower bound between the current region and its parent. Also calculate the
relative difference between the upper bound and the current lower bound, εrel.
The index of the branched variable is i.

3. Three different cases are possible:

If the relaxed problem is infeasible, or the region is rejected, Wi = Wi +A.
Else if Clb < A × εrel then

if Wi � 1 then Wi = Wi − A

if Wi > 1 then Wi = 1

Else if Clb > A × εrel then Wi = Wi + A

4. Enforce bounds of [0.25, 3] on Wi

The advantage of this method will be illustrated in Section 4.

3.4. VARIABLE BOUNDS UPDATING

At each iteration of the approach, the bounds on all or a subset of variables can
be updated by solving a sequence of feasibility problems. These problems are
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formulated as such,

x
L,∗
j /x

U,∗
j =




min
x

/ max
x

x

s.t. L(x) � 0
Lg(x) � UB

xL � x � xU

(83)

where x is the set of all algebraic variables, and j ∈ J where J is the set of
variables selected for updating. L(x) represents the relaxed constraint set, Lg(x)

is the relaxed objective function, and UB is the current upper bound on the global
solution. Formulation (83) includes all of the constraints in the convex relaxation,
including the dynamic equations. Considering a simple four component system,
there are at least 25 variables that appear in nonconvex constraints. Updating the
bounds on all of these variables at each iteration would require the solution of (83)
over 50 times. The computational effort required can be substantial. Therefore a
reduced formulation including only the linear constraints is generated:

x
L,∗
j /x

U,∗
j =




min
x

/ max
x

x

s.t. Llin(x) � 0
Llin

g (x) � UB

xL � x � xU

(84)

where Llin(x) is the set of linear relaxed constraints, and Llin
g (x) is the relaxed

objective function if it is linear. Due to the nature of the formulation, and the type
of underestimators used, Llin(x) includes almost all of L(x). As noted in Section
3.2, any constraint including only bilinear and linear terms will be linear in the
relaxation. Therefore, all stream balances, reactor material balances, CSTR mass
balances, part of the recycle PFR mass balance, and possibly part of the CSTR
reaction expressions depending on the type of kinetics, are included in the con-
straint set. The formulation is not as tight, and therefore does not result in as large
a reduction in the variable ranges as if the full relaxed constraint set was used.
However, the solution of a linear problem is substantially more computationally
efficient than a dynamic problem. The advantages of using this reduced formulation
will be illustrated in Section 4.

Another level of simplification can be introduced by identifying variables whose
bounds can directly be calculated from bounds on other variables. The variables for
which explicit expressions can be written are ci and rm. These expressions take the
form:

c
i,U
i = 1

1 + RL
c
c,U
i + RU

1 + RU
c
e,U
i r

m,U
j = f U

j (c
g)

c
i,L
i = 1

1 + RU
c
c,L
i + RL

1 + RL
c
e,L
i r

m,L
j = f L

j (c
g)

where f U
j (c

g) and f L
j (c

g) are the upper and lower bounds on the function fj (c
g).

These functional bounds can be determined analytically, or using interval analysis.
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Figure 4. Program flow.

3.5. IMPLEMENTATION

This algorithmic procedure has been implemented in an extensive C program with
an intuitive front end parser. All of the various formulations (original, relaxed,
linear bounds updating) are generated automatically. A link to the MINOPT op-
timization program (Schweiger and Floudas, 1998) is used to perform the local
optimizations and integrations. MINOPT itself has links to various local solvers.
For these problems, NPSOL (Gill et al., 1986) was used as the local nonlinear
optimization routine, CPLEX (CPLEX, 1997) is used to solve the linear bounds
updating problems, and DAESSA (Schweiger and Floudas, 1998) performs all
the necessary dynamic integrations. Also a link to the interval math library, PRO-
FIL/BIAS, is used in the automatic determination of β values. Figure 4 illustrates
the flow of information within the implementation.

4. Computational Studies

Five different isothermal reactor network problems will be presented to illustrate
the performance of the proposed approach. All computational results were obtained
on a Pentium III/600 running Linux. A common set of conditions for the algorithm
for each example include the following:
1. Branching: The variables included in the branching set are the flowrates and

component concentrations which appear in bilinear terms within the mass bal-
ances, as well as the residence time of the reactors and the recycle ratio (cg, ce,
cd , cc, Fc, Fcd , Fch, Fd , Fdc, Fdh, τm, τ t , R).

2. Bounds Updating: The same variables included in the branching set will also
be included in the updating set. The variables ci and rm, which are not in the
updated set, will have their bounds calculated at each iteration as a function of
the bounds on other variables (as shown in Section 3.4).

3. Variable Bounds: The bounds on the flowrates and the recycle ratio, R, are set
to [0, 1]. The bounds on the component concentrations are set depending on the
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Table 2. Local solutions for Van De Vusse, Case 1 example.

Obj. value Configuration Frequency (%)

0.43708 PFR (0.2533 s) 67.2

0.43309 CSTR (0.05 s) + PFR (0.2138 s) 4.6

0.33133 CSTR (0.3208 s) 5.1

Failed – 22.6

inlet concentration and the reaction stoichiometry. Bounds on residence times
are also different for each problem studied. It should be noted that the bounds
on the residence times are set strictly positive. This forces the nonexistence
of a reactor to be indicated when there is no flow to or from it. This removes
redundancy in which a zero size reactor simply would act as a transfer line.

4.1. VAN DE VUSSE REACTION, CASE 1

The Van de Vusse reaction mechanism has four species and three different reac-
tions:

A
k1−→ B

k2−→ C

2A
k3−→ D

The rate expressions for this mechanism take the form:

f1 = k1 cA

f2 = k2 cB

f3 = k3 c
2
A

The inlet stream to the network is pure A, with a concentration of 0.58 mol/l. The
rate constant vector used is:

k = [10s−1, 1s−1, 0.5l/mol s].
The objective is to maximize the outlet concentration of component B. The

bounds on the concentrations are set to: cA, cB, cC ∈ [0, 0.58]; cD ∈ [0, 0.29]. The
bounds on the residence time of the reactors are set at: τ t , τm ∈ [0.05s, 1s]. Using
the recycle PFR formulation, 4 different local solutions were identified, which are
shown in Table 2. The frequency of the solution is the percentage of randomly
chosen starting points that resulted in the given objective value. Notice that the
local solver failed almost 25 % of the time.
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Table 3. Global Solution times for the Van De Vusse, Case 1 example
using different formulation classes.

Formulation Sub-network Iterations CPU (min)

Standard – 5000∗ 697.35

Additional constraints – 449 102.40

Recycle PFR Full 347 75.70

Subnetwork 1 129 20.83

Subnetwork 2 41 5.28

Reduced component Full 1181 63.99

Subnetwork 1 285 9.67

Subnetwork 2 139 4.58

Non-Recycle PFR Full 98 24.87

Subnetwork 1 75 10.86

Subnetwork 2 14 1.74

Reduced component Full 183 8.93

(Nonrecycle PFR) Subnetwork 1 87 2.32

Subnetwork 2 24 0.75

∗ Only achieved a relative difference between the upper and lower
bounds of 2.15 %, but the upper bound was the known global solution.

Using the standard branching method and full dynamic bounds updating prob-
lems, this example was solved to global optimality (1% relative convergence toler-
ance) using each of the different formulations presented in Section 2.4. A constant
value of 0.1 was used for all the β values needed in the formulation. The results are
shown in Table 3. Notice that the standard formulation does not lead to convergence
in 5000 iterations. By simply adding the redundant constraints, convergence is
achieved in under 2 CPU hours. If the Recycle PFR reformulation is then used,
this time is reduced to 1.25 hours. By splitting the network and solving both sub-
networks to global optimality, the time is cut to 25 min. Using only the principle
components in the formulation, the solution time is finally reduced to 15 min. By
using the various reformulations the solution time is reduced from over 11 h to
15 min.

Also included in Table 3 are results when the recycle around the PFR is re-
moved. These results illustrate the complication a recycle stream adds to the formu-
lation. For instance, using the full network formulation, with all four components,
the solution time is reduced from 75 to 25 min. by simply removing the recycle
stream. In the attainable region approach, it is argued that in a two-dimensional
reactor network synthesis problem only CSTRs and PFRs (without recycle) are
needed for an optimal (in concentration space) configuration (Hildebrandt et al.,
1990). This example is two-dimensional, optimized in the concentration space, and
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Table 4. Global solution times for Van De Vusse, Case 1 example
using the sampled with interval analysis β calculation method. 1000
points were used initially, and at least 10 in each subsequent region.

Formulation Sub-network Iterations CPU (min)

Recycle PFR Full 532 168.60

Subnetwork 1 190 44.88

Subnetwork 2 75 12.83

Reduced Component Full 2100 99.50

Subnetwork 1 708 17.97

Subnetwork 2 453 11.52

the global solution does not include a recycle around the PFR. Nevertheless, the
recycle around the PFR is included in the superstructure for completeness. If the
objective was based on cost measures, which include the size of the reactors, the
validity of the attainable region theory is unknown, and the global solution may
contain a recycle around the PFR.

The results presented to this point are obtained using constant values for the
β parameters which may or may not be valid since no second order information
is being used. A value which ensures convexity of the lower bounding problem
is not always required to obtain convergence to the global minimum (Esposito
and Floudas, 2000a). Nevertheless, to prove convergence to the global minimum,
a valid convex underestimator is needed. Table 4 shows results for the final two
formulations using the sampling with interval analysis β calculation method de-
tailed in Section 3.2. To reasonably ensure that a convex problem is generated,
1000 points are used initially (pinit) and at least 10 in each subsequent region
(pevery). The scaled Gerschgorin theorem was used to determine the minimum
eigenvalue of the interval Hessian matrix (Adjiman et al., 1998b). The iteration
count and the solution time both increase from the constant case. The increase in
the iteration count is a result of an increase in the β values used which results in a
‘looser’ relaxation requiring more iterations to reach convergence. The increase in
the computational time is a result of both the increase in the number of iterations,
and the time required to generate the necessary second-order information. This
extra computational effort is required to meet the theoretical conditions to prove
convergence to the global minimum.

The next algorithmic measure to be explored is the use of linear bounds updat-
ing problems. The example was solved using the same conditions used to generate
Table 4 with the exception of linear bounds updating problems. Table 5 shows the
results using both the full and reduced component formulations. By using the linear
bounds updating problems, the iterations required to converge to the global solution
are greatly increased. This is simply the result of not determining the tightest best
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Table 5. Global solution times for Van De Vusse, Case 1 example
using the linear bounds updating problems.

Formulation Sub-network Iterations CPU (min)

Recycle PFR Full 2803 74.74

Subnetwork 1 1367 27.60

Subnetwork 2 232 6.00

Reduced Component Full 8982 91.04

Subnetwork 1 2566 11.71

Subnetwork 2 969 4.49

possible bounds on each variable at each iteration. Nevertheless, the computational
time is reduced since the linear bounds updating procedure only requires a fraction
of the time of the dynamic procedure. There is one anomalous result presented in
Table 5. In solving the reduced component formulation for the full network, the
use of linear bounds problems does not result in a significant reduction in time. In
this case, due to the large number of iterations (nearly 9000), a significant amount
of time is spent performing second order sensitivity evaluations in the calculation
of β values. In all other cases in both Tables 4 and 5, these evaluations require 1–2
CPU min, but in this case 28 CPU min were required. If we remove this element of
the computational time, the solution would require 63 CPU min. This is a reduction
of over 30 CPU min from the dynamic updating case.

Finally, the selection of the branching variable will be looked at. The problem
is solved using the adaptive branching scheme presented in Section 3.3 (with a
constant A = 0.25) along with the linear bounds updating problems. Table 6
shows the results using both the full and reduced component formulations. In most
cases, the use of the adaptive branching selection scheme results in a small or no
reduction in the number of iterations. However, in the case of the first subnetwork
formulation, the reduction in iteration count is quite significant. In the reduced
component formulation, a reduction of about 40% in both the iteration count and
computational time is observed. Figure 5 shows the frequency with which certain
variables are selected for branching. The differences between the standard scheme
and the adaptive scheme are small, but significant.

This example clearly illustrates the advantages of the various algorithmic im-
provements. Using the standard algorithmic conditions with the reduced compon-
ent formulation and subnetwork split, the global solution is obtained in a total of
29.49 CPU min. The application of the linear bounds updating problems and the
adaptive branching scheme result in the computational effort being cut more than in
half to 12.01 CPU min. A tuned set of algorithmic conditions can then be defined.
These conditions include the use of the adaptive branching scheme with A = 0.25
and the linear bounds updating problems. Additionally, calculated β values are
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Table 6. Global solution times for the Van De Vusse, Case 1 example
using the adaptive branching scheme and linear bounds updating
problems.

Formulation Sub-network Iterations CPU (min)

Recycle PFR Full 2835 71.15

Subnetwork 1 1163 19.25

Subnetwork 2 253 6.47

Reduced Component Full 8727 90.53

Subnetwork 1 1480 7.45

Subnetwork 2 925 4.56

Figure 5. Comparison of the branching selection frequency for the Van De Vusse, Case 1
example using the standard (empty bars) and the adaptive (filled bars) branching schemes.

determined using the scaled Gerschgorin theorem with a sample size of 1000 points
initially (pinit) and at least 10 in each subsequent region (pevery). These algorithmic
parameters will be used to solve all subsequent examples.

It is also interesting to note that for each of the cases solved in this example, the
upper bound determined at the root node of the tree was in fact the known global
solution. This initial solution requires only a few seconds of CPU time to generate.
The rest of the computational effort is required to prove the global optimality of
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Table 7. Local solutions for Van De Vusse, Case 2 example.

Obj. value Configuration Frequency (%)

0.3682 CSTR (0.1135 s) + PFR (0.1699 s) 44.9

0.3586 PFR (0.2152 s ; R = 0.206) 29.0

0.3573 PFR (0.1588 s ; R = 0.458) + CSTR (0.05 s) 1.3

0.3061 CSTR (0.3560 s) 12.5

0 All Bypass 8.2

Failed – 12.3

that solution. Therefore, the algorithm acts as a highly effective structured search
requiring little effort to actually identify the global solution. The rest of the time is
required to prove global optimality.

4.2. VAN DE VUSSE REACTION, CASE 2

This example uses the same kinetics and the same inlet stream as the previous
example. The reaction rate constants are slightly changed to: k = [10s−1, 1s−1,

5l/mol s]. The bounds on the concentrations, residence time of the reactors and
the recycle ratio are the same. This changes the structure of the global solution,
as well as the number and structures of the various local solutions as shown in
Table 7. Again these are generated by solving the recycle PFR formulation to a
local solution using multiple random starting points. Notice, that two of the local
solutions actually contain PFRs with recycle streams. The global solution, however,
does not contain a recycle.

This example was solved to global optimality (1 % relative convergence) using
the tuned set of algorithmic parameters defined in Section 4.1. Both the full four
component and the reduced component (including only A and C) formulations
were used with and without the subnetwork split reformulations. The results of
these runs are shown in Table 8. These results clearly illustrate the advantage of
using the subnetwork forms. In the reduced component formulation, by introducing
the subnetwork spilt, the solution time is reduced from over 7 CPU hrs. to about
45 CPU mins. Also evident is the advantage of including only the necessary com-
ponents in the formulations. Removing components B and D from the formulation
results in the solution time being cut in half, from 1.5 CPU hrs to 45 CPU mins.
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Table 8. Global solution times for the Van De Vusse, Case 2 example.

Formulation Sub-network Iterations CPU (min)

Recycle PFR Full 26 524 681.37

Subnetwork 1 3945 59.43

Subnetwork 2 2305 50.45

Reduced Component Full 35 229 437.10

Subnetwork 1 4275 28.78

Subnetwork 2 3035 19.24

4.3. SERIES-PARALLEL REACTION

This problem appears in Levenspiel (1973, p. 191) and is also studied by Achenie
and Biegler (1990). The reaction scheme is defined by:

A + B
k1−→ R

R + B
k2−→ S

The rate expressions for this mechanism take the form:

f1 = k1 cA cB

f2 = k2 cR cB

where the reaction rate constant vector is defined as:

k = [68.80l/molh, 34.40l/mol h].
The objective is to maximize the yield of the component R (CR/C

0
A). The inlet

to the network is a mixed feed of components A and B, both with a concentration
of 0.5 mol/l. The bounds on the concentration were set to: cA, cB, cR, cS ∈ [0, 0.5],
and the bounds on the residence times were set to: τm, τ t ∈ [0.05h, 1.0h]. Table 9
shows the local solutions for this example.

This example was solved to global optimality (1 % relative convergence) using
the tuned set of algorithmic parameters. Both the full four component recycle PFR
and the reduced component recycle PFR formulations were used with the subnet-
work split. For this example, three components are needed in the formulation, A,
B, and R. The results of these runs are shown in Table 10. Even though three out of
the four components are needed in the reduced component formulation, there is a
decrease in the required computational effort. The computational time was reduced
nearly in half from 85 CPU min for both subnetworks in the four component form
to 50 CPU min using three components.
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Table 9. Local solutions for the Series-Parallel example.

Obj. value Configuration Frequency (%)

0.500 PFR (0.4717 h) 79.8

0.458 CSTR (0.05 h) + PFR (0.6726 h) 2.7

0.343 CSTR (0.2396 h) 5.9

0 All Bypass 5.6

Failed – 6.0 %

Table 10. Global solution times for the Series-Parallel Example

Formulation Sub-network Iterations CPU (min)

Recycle PFR Subnetwork 1 3915 81.84

Subnetwork 2 187 3.12

Reduced component Subnetwork 1 4342 48.36

Subnetwork 2 137 1.33

4.4. LEVENSPIEL EXAMPLE

This example is taken from Levenspiel (1993 p. 8.21). The reaction scheme for this
example takes the form:

The reaction expressions for this mechanism take the form:

f1 = k1 cA

f2 = k2 cA

f3 = k3 cR

f4 = k4 cS

where the reaction rate constant vector is defined as k = [ 0.21 s−1, 0.20 s−1, 4.2
s−1, 0.004 s−1]. The objective is to maximize the yield of component S, with an
initial inlet to the network of pure A with a concentration of 1 mol/l. The bounds
on the concentration were set to: cA, cB, cR, cS ∈ [0, 1.0], and the bounds on the
residence times were set to: τm, τ t ∈ [0.05min, 1.0min]. Table 11 shows the local
solutions for this example.

The problem was solved to global optimality using both the full four component
formulation and a reduced component formulation containing only A, R, and S.
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Table 11. Local solutions for the Levenspiel example.

Obj. value Configuration Frequency (%)

0.955 PFR (0.1922 min) 95.7

0.951 CSTR (0.05 min) + PFR (0.160 min) 2.6

0.824 CSTR ( 0.4226 min) 1.2

0 All bypass 0.1

Failed – 0.4

Table 12. Global solution times for the Levenspiel example.

Formulation Sub-network Iterations CPU (min)

Recycle PFR Subnetwork 1 361 11.27

Subnetwork 2 319 9.61

Reduced component Subnetwork 1 5333 72.72

Subnetwork 2 2498 31.88

A relative convergence tolerance of 0.1 % was used due to the small difference
between local solutions. Table 12 gives the results for each of the two subnetwork
forms. The results show something very interesting, the full four-component for-
mulation takes an order of magnitude fewer iterations and 1 h less computational
time to solve. This appears to be quite contradictory to all previous results. This
discrepancy can be linked to the material balances around each of the reactors
(Eqs. (19) – (22) ). In the reduced component formulation, these balances cannot
be written as equality constraints as they can be in the full component form. In
this example, these balances have a dramatic effect on the solution. Table 13 shows
results using the full component formulation when the material balances around
the reactors are not included. Neither of the subnetwork forms was able to reach
convergence in 10 000 iterations. For this example, due to the complex nature of
the reaction mechanism, it is advantageous to include all four components in the
formulation.

4.5. TRAMBOUZE REACTION

This reaction is originally presented by Trambouze and Piret (1959). It has also
been studied by Achenie and Biegler (1986), Kokossis and Floudas (1990), and
Schweiger and Floudas (1999). The scheme includes a zeroth-order, first-order,
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Table 13. Global solution times for the Levenspiel example using
the full component recycle PFR formulation, and removing the
material balances around the reactors.

Subnetwork Iterations CPU (min) Rel. difference (%)

1 10 000 191.05 4.67

2 10 000 170.21 0.82

and second-order reaction in parallel:

The reaction expressions for this mechanism take the form:

f1 = k1

f2 = k2 cA

f3 = k3 c
2
A

where the reaction rate constant vector is defined as k = [ 0.025 mol/l min, 0.20
min−1, 0.4 l/mol min]. The objective for this example is to maximize the selectivity
of component C starting with a feed of pure A with a concentration of 1 mol/l.
Converting the problem into the equivalent minimization, the objective function is
written as:

min
−chC

1 − chA
(85)

The bounds on the concentration are set to: cA, cB, cR, cS ∈ [0, 1.0], with the
exception of chA whose bounds are set to [0,0.9] to insure the objective function
is defined over the full variable space. The bounds on the residence times were
set to: τm, τ t ∈ [0.05min, 1.0min]. Table 14 shows the local solutions for this
example. It is interesting to note that one of the local solutions does include a
recycle PFR, but the global solution does not. In this example, the system bypass
stream, Fah is removed from the network. Due to the nature of objective function,
the inclusion of the bypass stream results in an infinite number of solutions with
the same selectivity. By varying the split of the feed between the bypass stream and
the CSTR and changing the size of the CSTR accordingly, the selectivity remains
constant at 0.5.

The objective function, given by (85), is not linear nor is it convex. It is actu-
ally pseudo-convex which is the theoretical requirement for a convex optimization
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Table 14. Local solutions for Trambouze example.

Obj. Value Configuration Frequency (%)

0.500 CSTR (0.125 h) 35.8

0.473 PFR (0.0587 h, R = 1.0) 41.0

Failed – 23.2

problem. Therefore, the objective function need not be underestimated and can be
included as is in both the upper and lower problem formulations. The drawback
is since the objective function is not linear in nature, it cannot be included in the
linear bounds updating problems. Another approach is to reformulate the objective
function such that the resulting underestimated form is linear. This is accomplished
by introducing the variable s, which represents the selectivity, into the formulation,

s = chC

1 − chA
.

The objective function is then written as:

min −s,

and the bilinear constraint,

s − s chA − chC = 0

is added to the formulation. As a result of this bilinear reformulation, the objective
function is underestimated in a linear manner, and can be included in the lin-
ear bounds updating problems. The bounds on the additional variable s can be
calculated from the bounds on ch:

sL = c
h,L
C

1 − c
h,L
A

sU = c
h,U
C

1 − c
h,U
A

The example was solved to global optimality (1 % relative convergence) using
the reduced component formulation with the subnetwork split. The only compon-
ents needed in the formulation are A and C. Both forms of the objective function
were explored. Table 15 presents results which show that the use of the pseudo-
convex form of the objective function is preferred. The bilinear form can be in-
cluded in the linear bounds updating problem, but the tightening of the variable
bounds does not offset the relaxed nature of the objective function.
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Table 15. Global solution times for the Trambouze example
using the reduced component formulations with different forms
of the objective function.

Obj. Form Sub-network Iterations CPU (min)

Pseudo-convex Subnetwork 1 421 2.02

Subnetwork 2 2733 9.70

Bilinear Subnetwork 1 425 1.93

Subnetwork 2 4093 15.51

Table 16. Summary of the global solution times for all the examples
presented.

Example Local solutions Iterations CPU (min)

Van de Vusse, case 1 3 2405 12.01

Van de Vusse, case 2 5 7310 48.02

Series-Parallel 4 4479 49.69

Levenspiel 4 680 20.88

Trambouze 2 3154 11.72

4.6. SUMMARY OF COMPUTATIONAL RESULTS

Table 16 gives a summary of the computational results for the five example prob-
lems explored. The solution times provided are the total time and iterations re-
quired for both subnetwork forms using the tuned set of algorithmic conditions
defined in Section 4.1. For all but the second Levenspiel example, the results shown
were obtained using the reduced component formulations. In the second Levenspiel
example, as shown in Section 4.4, it is advantageous to include all components in
the formulation.

One of the more interesting results which deserves to be revisited is the effect of
the problem formulation. In Example 1 the dramatic difference between each of the
formulation classes was clearly illustrated. The effects of the various formulation
improvements can be explained through the characteristics of the algorithm:

• Additional redundant constraints These allow for a tighter underestimating
formulation. They restrict the allowable range of the bilinear terms which
appear in various component balances. A tighter underestimating formulation
directly results in a decrease in the number of iterations required to achieve
convergence.

• Recycle PFR formulation By replacing the standard PFR and explicit recycle
stream with a recycle PFR the number of nonconvex terms and variables are
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decreased. This will also result in a reduction in the number of iterations
required to reach convergence.

• Subnetwork split In reducing the problem to two subnetworks, the result-
ing formulations contain fewer constraints, variables, and nonconvex terms.
Therefore, the combined time required to solve these two smaller problems is
much less than that required to solve the full network.

• Reduced component formulation By removing a number of ‘unimportant’
components, the number of variables and bilinear terms is reduced. How-
ever, some of the material balances need to be rewritten as shown in Section
2.3.5. This results in a looser underestimating formulation since the number
of degrees of freedom are increased (equality constraints were replaced with
inequalities). In four of the five example problems, the reduction in the num-
ber of variables overcomes the loosing of the underestimator. However, in
one example (the second Levenspiel example in section 4.4) it was better to
include the full component space.

In general, each additional element aimed to reduce the number of nonconvex
variables and terms in the formulation. These ideas can easily be applied to other
problem classes solved using branch and bound type algorithms.

The following additional remarks about these examples can be made:

• All the local solutions to the examples differ in the structure of the network.
There are no local solutions which are based on the same network struc-
ture with different reactor sizes or recycle ratios. This shows the nonconvex-
ity in the mass network (the bilinearities in the mass balances) is the major
complicating feature of the formulation.

• The proposed approach was actually able to identify the global solution within
five iterations and less than 1 min of computational time for each of the
examples. In most cases, the global solution was identified at the root node
of the branch-and-bound tree requiring only a few seconds of computational
time. The rest of the effort is required to prove the global optimality of the
solution. Therefore, not only does the proposed approach offer a theoretical
guarantee of convergence to the global minimum, but also acts as a highly
effective directed search.

5. Conclusion

This paper presented a novel deterministic global optimization approach for the
solution of the reactor network synthesis problem. A superstructure method was
used to formulate the optimization as a nonconvex optimal control problem. The
global solution to this formulation is determined using an algorithm developed
around a branch-and-bound framework. A series of non-increasing upper bounds
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on the global solution are obtained by solving the original formulation to a local
optimum. A second series of non-decreasing lower bounds on the global solution
are determined by solving a convex relaxation of the original problem. Conver-
gence to the global solution is obtained by subdividing the region at each level of
the branch-and-bound tree.

Numerous computational aspects of the approach were illustrated on a series
of isothermal network problems taken from various literature sources. In every
example, multiple local optima were observed, each possessing a different net-
work structure. In terms of the global optimization approach, it was found that
the problem formulation has the largest effect of the convergence rate of the al-
gorithm. Using what can be referred to as a ‘standard’ formulation, the algorithm
was unable to converge to the global solution. By performing various reformula-
tions and adding redundant constraints, the algorithm was able to converge to the
global solution with reasonable computational effort. Methods for the selection
of branching variables and the updating of variable bounds were investigated. An
adaptive scheme was developed to determine the branching variable based on the
progress of the algorithm. A bounds updating method was presented which solves
a series of simple linear optimization problems. Through the application of these
methods, the solution time was reduced nearly in half. Convergence to the global
optimum took on the order of minutes, however, the algorithm actually identified
the global solution as the upper bound on the order of seconds.
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